《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 基于5G架構(gòu)超密集組網(wǎng)粒子群優(yōu)化算法改進
基于5G架構(gòu)超密集組網(wǎng)粒子群優(yōu)化算法改進
2023年電子技術(shù)應(yīng)用第1期
彭昇1,,趙建保2,魏敏捷3
1.上海電力大學(xué) 電子信息工程學(xué)院,,上海 201306,;2.國網(wǎng)信息通信產(chǎn)業(yè)集團有限公司,,北京 102200,; 3.上海電力大學(xué) 電氣工程學(xué)院,上海 201306
摘要: 隨著移動通信技術(shù)的發(fā)展,,傳統(tǒng)智能終端設(shè)備無法滿足快速增長的海量數(shù)據(jù)計算要求,,移動邊緣計算為物聯(lián)網(wǎng)中移動用戶提供了低延遲和靈活的計算方案。綜合考慮邊緣服務(wù)器上有限的計算資源以及網(wǎng)絡(luò)中用戶的動態(tài)需求,,提出通過二進制粒子群優(yōu)化算法分配發(fā)射功率優(yōu)化傳輸能耗,。將請求卸載與資源調(diào)度作為雙重決策問題進行分析,基于粒子群優(yōu)化算法提出了一種新的多目標優(yōu)化算法求解該問題,。仿真結(jié)果表明,,二進制粒子群優(yōu)化算法可以節(jié)省傳輸能耗,且具有良好的收斂性,。所提出的新算法在響應(yīng)率方面優(yōu)于現(xiàn)有算法,,在動態(tài)邊緣計算網(wǎng)絡(luò)中可以保持良好的性能。
中圖分類號:TN929.5,;TN301.6
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223278
中文引用格式: 彭昇,,趙建保,魏敏捷. 基于5G架構(gòu)超密集組網(wǎng)粒子群優(yōu)化算法改進[J]. 電子技術(shù)應(yīng)用,,2023,,49(1):69-74.
英文引用格式: Peng Sheng,Zhao Jianbao,,Wei Minjie. Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture[J]. Application of Electronic Technique,,2023,49(1):69-74.
Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture
Peng Sheng1,,Zhao Jianbao2,,Wei Minjie3
1.College of Electronic Information Engineering,Shanghai University of Electric Power,, Shanghai 201306,, China; 2.State Grid Information and Telecommunication Group Co.,, Ltd.,, Beijing 102200, China,; 3.College of Electrical Engineering,Shanghai University of Electric Power,, Shanghai 201306,, China
Abstract: With the development of mobile communication technology, traditional intelligent terminal devices cannot meet the rapidly growing massive data computing requirements. Mobile edge computing provides low-latency and flexible computing solutions for mobile users in the Internet of Things. Considering the limited computing resources on the edge server and the dynamic needs of users in the network, this paper proposes to allocate the transmit power to optimize the transmission energy consumption through the binary particle swarm optimization algorithm. Analyzing request offloading and resource scheduling as a dual decision-making problem, a new multi-objective optimization algorithm based on particle swarm optimization algorithm is proposed to solve the problem. The simulation results show that the binary particle swarm optimization algorithm can save transmission energy and has good convergence. The proposed new algorithm outperforms existing algorithms in terms of response rate and can maintain good performance in dynamic edge computing networks.
Key words : edge computing;resource optimization,;particle swarm optimization,;task offloading

0 引言

    隨著移動通信技術(shù)的迅速發(fā)展,,物聯(lián)網(wǎng)中的終端設(shè)備(例如智能手機、智能家居,、智能汽車等)都可以通過互聯(lián)網(wǎng)來進行相互連接[1],。近年來,移動設(shè)備類型及數(shù)量呈指數(shù)增長,,目前移動設(shè)備往往為了具備便攜性與簡易性,,而缺乏足夠的計算能力及容量來滿足應(yīng)用的服務(wù)質(zhì)量要求。移動邊緣計算(Mobile Edge Computing,,MEC)是物聯(lián)網(wǎng)邊端設(shè)備執(zhí)行計算請求的方法[2],,移動網(wǎng)絡(luò)運營商與云服務(wù)提供商在邊端服務(wù)器中部署豐富的計算資源,在邊端中對移動終端設(shè)備所產(chǎn)生的大量數(shù)據(jù)進行計算處理,。

    邊緣計算資源調(diào)度的核心觀點是通過優(yōu)化移動邊緣計算來提高計算資源與能力從而滿足用戶的需求,。網(wǎng)絡(luò)運營商開始普遍構(gòu)建5G架構(gòu)的超密集組網(wǎng)(Ultra-Dense Network,UDN)多基站協(xié)同服務(wù)場景[3],。在UDN中通過部署宏基站(Macro-cell Base Station,MBS)與多個微基站(Small-cell Base Station,SBS)實現(xiàn)極高的頻率復(fù)用,,極大提高了覆蓋地區(qū)的系統(tǒng)容量與計算能力。




本文詳細內(nèi)容請下載:http://forexkbc.com/resource/share/2000005079,。




作者信息:

彭昇1,,趙建保2,魏敏捷3

(1.上海電力大學(xué) 電子信息工程學(xué)院,,上海 201306,;2.國網(wǎng)信息通信產(chǎn)業(yè)集團有限公司,北京 102200,;

3.上海電力大學(xué) 電氣工程學(xué)院,,上海 201306) 




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。