《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 依賴差分隱私:關(guān)聯(lián)數(shù)據(jù)集下的高斯機制
依賴差分隱私:關(guān)聯(lián)數(shù)據(jù)集下的高斯機制
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
歐陽恒,陳洪超
貴州輕工職業(yè)技術(shù)學(xué)院信息工程系
摘要: 差分隱私(Differential Privacy)是一種數(shù)據(jù)擾動框架,,它保證查詢結(jié)果在概率上不可區(qū)分,。研究表明差分隱私應(yīng)用于關(guān)聯(lián)數(shù)據(jù)集時,,將帶來隱私泄露的風(fēng)險。根據(jù)依賴差分隱私(Dependent Differential Privacy),,量化了依賴差分隱私敏感度的度量,;隨后,提出了依賴差分隱私-高斯機制算法(Gaussian Mechanism Algorithm Dependent Differential Privacy),,實現(xiàn)數(shù)據(jù)擾動,,同時證明了該機制滿足隱私保證的基本定理;通過使用真實數(shù)據(jù)集的實驗表明,,GMA DDP在管理依賴數(shù)據(jù)的隱私-效用權(quán)衡方面具有較高的可用性,。
中圖分類號:TP309.2文獻(xiàn)標(biāo)識碼:ADOI:10.19358/j.issn.2097-1788.2024.03.002
引用格式:歐陽恒,陳洪超.依賴差分隱私:關(guān)聯(lián)數(shù)據(jù)集下的高斯機制[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,,43(3):9-13.
Dependent differential privacy: Gaussian mechanism for correlated datasets
OuYang Heng, Chen Hongchao
Department of Information Engineering, Guizhou Light Industry Technical College
Abstract: Differential Privacy is a data perturbation framework, which ensures that the query results are not distinguishable in probability. Research shows that when differential privacy is applied to associated data sets, it will bring the risk of privacy disclosure. Based on the dependent differential privacy, this paper quantifies the sensitivity of the dependent differential privacy; Then, a Gaussian Mechanism Algorithm Dependent Differential Privacy is proposed to realize data disturbance, and the basic theorem that the mechanism meets the privacy guarantee is proved; Experiments using real data sets show that GMA DDP has high availability in managing privacy utility tradeoffs that depend on data.
Key words : differential privacy; dependent differential Privacy; Gaussian mechanism; correlated dataset

引言

數(shù)據(jù)成為信息時代最重要的生產(chǎn)要素,,將帶來巨大的經(jīng)濟效益。然而,,隨著數(shù)據(jù)分析技術(shù)與機器學(xué)習(xí)的發(fā)展,,直接發(fā)布不經(jīng)過隱私保護(hù)處理的數(shù)據(jù),可能會導(dǎo)致隱私的泄露,。Dwork等人[1]提出了差分隱私,,作為一種擁有嚴(yán)格的數(shù)學(xué)定義和邏輯證明的隱私保護(hù)方法,能夠為數(shù)據(jù)的發(fā)布提供強有力的隱私保護(hù),。高斯機制最初也由Dwork等人[1]提出,,添加噪聲量σ2006最少應(yīng)滿足:σ2006≥Δ2log2/δ/ε,其中Δ是查詢的敏感度,。然而,,由于該方法噪聲量較大,沒有被廣泛應(yīng)用,。隨后,,Dwork等人[2]提出了一種優(yōu)化后的噪聲量計算方法σCGM≥Δ2log125/δ/ε,現(xiàn)已被廣泛采用,。然而,,2018年Balle等人[3]重新審視了高斯機制,提出了分析高斯機制(AGM)在噪聲量σAGM達(dá)到了最優(yōu)的效用,,但由于其沒有封閉的表達(dá)式,,需要使用二分法迭代計算,時間復(fù)雜度較高Θ(log2n),。


本文詳細(xì)內(nèi)容請下載:

http://forexkbc.com/resource/share/2000005928


作者信息:

歐陽恒,陳洪超

貴州輕工職業(yè)技術(shù)學(xué)院信息工程系, 貴州貴陽550025


雜志訂閱.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。