《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于粒子群優(yōu)化的約束廣義預(yù)測(cè)控制實(shí)現(xiàn)方法
基于粒子群優(yōu)化的約束廣義預(yù)測(cè)控制實(shí)現(xiàn)方法
來源:微型機(jī)與應(yīng)用2010年第18期
金建平
(常州機(jī)電職業(yè)技術(shù)學(xué)院,,江蘇 常州213164)
摘要: 用微粒群優(yōu)化算法解決存在約束的廣義預(yù)測(cè)控制的優(yōu)化問題,并給出了基于微粒群優(yōu)化算法的廣義預(yù)測(cè)控制算法的實(shí)現(xiàn)方法,。將該算法應(yīng)用到工業(yè)過程對(duì)象中進(jìn)行測(cè)試,,仿真結(jié)果表明了算法的有效性和高效性,,獲得了良好的控制效果。
Abstract:
Key words :

摘  要: 用微粒群優(yōu)化算法解決存在約束廣義預(yù)測(cè)控制的優(yōu)化問題,并給出了基于微粒群優(yōu)化算法的廣義預(yù)測(cè)控制算法的實(shí)現(xiàn)方法,。將該算法應(yīng)用到工業(yè)過程對(duì)象中進(jìn)行測(cè)試,,仿真結(jié)果表明了算法的有效性和高效性,獲得了良好的控制效果,。
關(guān)鍵詞: 廣義預(yù)測(cè)控制,;遺傳算法;優(yōu)化,;約束

    廣義預(yù)測(cè)控制已經(jīng)在工業(yè)過程中得到廣泛應(yīng)用,。在廣義預(yù)測(cè)控制中,如果被控過程是線性無約束的,,并且目標(biāo)函數(shù)是二次型的形式,,則可求得一個(gè)解析的線性控制器,但是實(shí)際工業(yè)過程中存在著各種約束,,這會(huì)使求解控制量的滾動(dòng)優(yōu)化問題變得復(fù)雜,,通常需求解一個(gè)有約束的二次規(guī)劃或非凸規(guī)劃,而傳統(tǒng)的通過迭代求解二次規(guī)劃和非凸規(guī)劃方法計(jì)算量非常大,,另外非凸規(guī)劃的求解對(duì)初始條件也非常敏感,,這些會(huì)影響到廣義預(yù)測(cè)控制的性能。為了解決此問題,,本文將粒子群優(yōu)化算法應(yīng)用到廣義預(yù)測(cè)控制中,,解決廣義預(yù)測(cè)控制的局限性。
1 廣義預(yù)測(cè)控制算法
    廣義預(yù)測(cè)控制算法是一種先進(jìn)的控制算法,,它廣泛應(yīng)用在電力,、煉油、化工和造紙等工業(yè)領(lǐng)域,,是一種源于實(shí)際工業(yè)過程的高級(jí)控制算法,,是預(yù)測(cè)控制中最具代表性的算法之一[1-4],隨著對(duì)廣義預(yù)測(cè)控制研究的不斷深入,,其理論和算法也逐步得到了完善,。在廣義預(yù)測(cè)控制算法中,用受控自回歸積分滑動(dòng)平均(CARMA)模型描述一個(gè)具有非平穩(wěn)噪聲的實(shí)際過程可表示為:

 
    式(19)中,,如果控制量存在約束情況,,則需求解帶有約束的二次規(guī)劃,約束非線性的存在會(huì)導(dǎo)致優(yōu)化成為一個(gè)非凸規(guī)劃,,非凸規(guī)劃的求解對(duì)初始條件非常敏感,,會(huì)在局部最優(yōu)解處收斂,無法保證求得的是全局最優(yōu)解,本文嘗試用微粒群優(yōu)化(PSO)算法來解決這一局限性,。
2 PSO算法及其改進(jìn)
2.1 基本PSO算法原理

    由Kennedy和Eberhart提出的PSO算法[5-7]來源于對(duì)簡(jiǎn)單社會(huì)的模擬,,最初設(shè)想是模擬對(duì)鳥群覓食的過程,后來發(fā)現(xiàn)PSO算法是一種很好的優(yōu)化工具,。PSO算法與其他進(jìn)化算法相類似,,也是將尋優(yōu)的參數(shù)組合成群體,通過對(duì)環(huán)境的適應(yīng)度來將群體中的個(gè)體向更好的區(qū)域移動(dòng),。與其他進(jìn)化算法不同,,在描述個(gè)體時(shí),將其看成是D維尋優(yōu)搜索空間的一個(gè)沒有體積的微粒(點(diǎn))[8-10],,結(jié)合微粒的歷史最佳位置和群體歷史中最優(yōu)微粒的最佳位置信息,,按追隨最優(yōu)微粒的原理,以一定的速度向目標(biāo)值逼近,。

一代提供信息,使粒子獲得的信息量增大,,從而可能更快地找到最優(yōu)解,。同時(shí)Pn的權(quán)重系數(shù)很小,相當(dāng)于擾動(dòng)信息,,增加了粒子的多樣性,,避免算法過早收斂。式(21)和式(22)組成后稱之為改進(jìn)的PSO算法(MPSO),。
2.3 算法設(shè)計(jì)
    引入了約束的廣義預(yù)測(cè)控制問題,,實(shí)際上就是一個(gè)非線性優(yōu)化問題,利用PSO算法對(duì)其進(jìn)行處理的基本思想是:首先通過選擇合適的適應(yīng)度函數(shù),,將有約束廣義預(yù)測(cè)控制性能指標(biāo)優(yōu)化的極小值問題轉(zhuǎn)化為PSO算法優(yōu)化的極大值問題,;然后通過空間限定法引入約束,經(jīng)迭代計(jì)算后最終得到滿足約束的最優(yōu)控制量求解,。
    基于MPSO算法的廣義預(yù)測(cè)控制結(jié)構(gòu)如圖1所示,,預(yù)測(cè)模型采用式(12)的形式,MPSO算法通過優(yōu)化性能指標(biāo)J(t)輸出控制量進(jìn)行控制,。


    對(duì)優(yōu)化性能指標(biāo)進(jìn)行變換得到適應(yīng)度函數(shù)為:

式中,,J(t)可以是式(18)的形式,也可以是滿足控制性能要求的其他形式,,通過這種變換將GPC優(yōu)化的極小值問題轉(zhuǎn)化為MPSO算法優(yōu)化的極大值問題,,并使MPSO算法的適應(yīng)度函數(shù)值都在區(qū)間[0,1]中變化,。
3 仿真實(shí)例
    熱交換器是工業(yè)生產(chǎn)所需要的一種換熱裝置,,結(jié)構(gòu)如圖2所示,圖中,T1,、T2,、T3、T4,、T5均為溫度控制器,,F(xiàn)1、F2,、F3均為測(cè)量流量的控制器,,P1為測(cè)量壓力的控制器。系統(tǒng)中包括2個(gè)輸入管,,即1個(gè)熱水管和1個(gè)冷水管,,對(duì)應(yīng)控制其流量的閥門為V1、V2,。另外還有1個(gè)15 kW的隔熱式加熱水箱,。水箱中的溫度通過冷水管中的流量來控制,而水箱中的水又經(jīng)過1個(gè)離心泵,,通過閥門V3來控制,,輸送回?zé)峤粨Q器中。這其中包括很多閉環(huán)控制系統(tǒng),,被測(cè)量有溫度,、流量、壓力等,,本文選擇的閉環(huán)系統(tǒng)為熱交換器中循環(huán)水的溫度控制,,對(duì)溫度控制回路的擾動(dòng)主要有蒸汽壓力、水流速度和進(jìn)水溫度,。本文選取的閉環(huán)控制為圖2中的T4-V3環(huán)節(jié),。



    本文嘗試用微利群優(yōu)化算法來解決該非線性優(yōu)化問題,從仿真結(jié)果來看,,該算法具有良好的魯棒性和跟蹤性能,,取得了滿意的控制效果,表明將粒子群優(yōu)化算法應(yīng)用到廣義預(yù)測(cè)控制中是可行和有效的,。
參考文獻(xiàn)
[1] MENDES J,KENNEDY J, NEVES J.Watch the neighbor or how the swarm can learn from its environment[C].Proc.Of  the IEEE Swarm Intelligence Symposium.Indiana: IEEE Press, 2003:88-94.
[2] CLARKE D W.Generalized predictive control-part I[J]. Automatica,1987,23(2):137-148.
[3] CLARKE D W.Generalized predictive control-part II extensions and interpretations[J].Automatica,1987,23(2):149-160.
[4] 王偉.廣義預(yù)測(cè)控制理論及其應(yīng)用[M].北京: 科學(xué)出版社,1998.
[5] KENNEDY J, EBERHART R.Particle swarm optimization[C]. Proc.IEEE Int.Conf.on Neural Networks.Perth: IEEE Press,1995:1942-948.
[6] SHI Yu Hui, EBERHART R.A modified particle swarm optimizer[C].Proc.IEEE Int.Conf.on Evolutionary Computation.Anchorage: IEEE Press,1997:303-308.
[7] ZHANG L P, YU H J, HU S X.A new approach to improve particle swarm optimization[C].Proc.Of the Genetic and Evolutionary Computation Conf.Chicago: IEEE Press, 2003:134-142.
[8] MILLONAS M M.Swarms phase transition and collective intelligence[M].MA: Addison Wesley, 1994.
[9] SHI Y,,EBERHART R C.Fuzzy adaptive particle swarm optimization[C].Proc.Of the IEEE Congress on Evolutionary computation.Seoul,Korea:IEEE Press, 2001:101-106.
[10] RATNAWEERA A, HALGAMUGE SK, WATSON C.Selforganizing hierarchical particle swarm optimizer with timevarying acceleration coefficient[C].IEEE Trans.Evolutionary computation.IEEE Press, 2004:240-255.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。