《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 車載穩(wěn)像系統(tǒng)的技術設計與實現(xiàn)
車載穩(wěn)像系統(tǒng)的技術設計與實現(xiàn)
摘要: 車載成像技術是一種將成像設備置于車載平臺的遠距離,、非接觸獲取目標圖像的技術和方法,是未來汽車智能化的關...
關鍵詞: 視頻幀 PSNR 圖像序列
Abstract:
Key words :

       車載成像技術是一種將成像設備置于車載平臺的遠距離,、非接觸獲取目標圖像的技術和方法,,是未來汽車智能化的關鍵。但是由于攝像機隨車體晃動導致輸出的圖像序列不穩(wěn)定,,圖像序列晃動量較大,,易使觀察者產(chǎn)生疲勞,也會嚴重影響后續(xù)處理的精度,,因此,,必須對車載圖像序列進行穩(wěn)定。

  目前,,車載穩(wěn)像技術使用較多的算法為特征點法和灰度投影法,。特征點法能對任意形式的圖像運動進行運動矢量估計,但在處理一些畫質(zhì)較差,,特征貧乏的圖像時,,精度往往很低,很難適應車載視頻穩(wěn)像的各種環(huán)境變化;灰度投影法只能處理只含平移運動和較小旋轉(zhuǎn)運動的情況,,且要求圖像有一定的對比度,。而車載視頻往往拍攝時路況環(huán)境比較復雜,如雨霧天氣,,這就給算法處理的精度帶來很大影響,。本文針對這種情況,采用小波的方法對圖像進行預處理,,提高灰度投影法在車載穩(wěn)像應用中的抗干擾能力,。

  1 車載穩(wěn)像系統(tǒng)框圖

  電子穩(wěn)像是利用電子設備和數(shù)字圖像處理技術相結合的方法,通過計算選定的參考幀圖像和被比較的當前幀圖像的運動矢量,,再根據(jù)獲得的運動矢量按照某種準則對當前圖像進行補償,,從而消除或減輕圖像序列幀間的隨機抖動,獲得穩(wěn)定的圖像序列,。

  電子穩(wěn)像作為車載穩(wěn)像系統(tǒng)中的核心部分,,其系統(tǒng)結構如圖1所示,。

  


 

  圖1 系統(tǒng)框圖

  其中,全局運動矢量估計是整個穩(wěn)像系統(tǒng)的關鍵,,它決定了穩(wěn)像精度和耗時性,。

  1.1 運動矢量估計算法

  通過對高速路抖動特點的分析,并且對目前在電子穩(wěn)像中常用的運動估計算法進行各自優(yōu)缺點的比較,,本系統(tǒng)決定采用灰度投影算法進行全局運動矢量估計,。

  灰度投影算法:投影法是利用圖像總體灰度變化規(guī)律來確定圖像運動矢量的一種方法,它不必對圖像上的每一點做相關運算,,而是利用圖像的灰度投影曲線做一次相關運算,,因此它的運算量小,運動估計速度快,,容易滿足實時性要求,,同時抑制噪聲的能力較強,并且在精度上也能較好地滿足要求,。

  該算法首先通過投影公式將每一幀二維圖像映射成兩個一維波形,,其行列灰度值累加表示為:

  


 

  式中:Ik(i)代表第k幀圖像第i行的灰度值,Ik(i)代表第k幀圖像第j列的灰度值,,Gk(i,j)為第k幀圖像上(i,j)處的像素灰度值,。

  為了避免因圖像抖動導致圖像邊緣信息發(fā)生變化,而影響互相關計算出的互相關曲線峰值,,在進行互相關計算前,,對圖像進行余弦濾波,去除圖像邊界信息波形而完整保留中心區(qū)域波形,,減小邊界信息對互相關計算的影響,,提高計算精度。投影濾波后,,對參考幀和當前幀各分量的兩條曲線進行相關計算,,找到兩條曲線的惟一谷值,即可確定出當前幀相對于參考幀的行列運動偏移量,。相關運算的公式為:

  


 

  式中:colc(n)和colr(n)分別為第i幀和參考幀的在一個方向上的灰度投影值,,J為兩曲線中進行相關運算的單位長度,m為位移矢量相對于參考幀在一側(cè)的搜索寬度,,即允許的最大正負抖動范圍,,m在1至2m+1間取值。當C(k)為最小值時,,此時k=Kmin,,則第i幀圖像相對于參考幀圖像在一個方向上的位移矢量為:

  


 

  以水平方向為例,vi為正時,,表明當前幀相對參考幀向右移了|vi|個像素;為負時,表明向左移了|vi|個像素。同樣的方法,,可以得到垂直方向的位移矢量,。

1.2 針對雨霧天氣的圖像預處理

  通過對灰度投影法原理的分析,可知灰度投影算法要求圖像有一定的對比度,,當圖像灰度值單一并且對比度差時,,利用灰度投影算法對圖像匹配會造成投影曲線很平,相關運算后波谷段平緩不易找到,,難以找到正確的運動矢量,。而雨霧天氣是車輛外出常常碰到的情況,惡劣天氣也給投影算法帶來很大影響,。因此,,需要對圖像進行預處理。傳統(tǒng)的預處理方法是通過直方圖均衡化進行,,但這種方法存在丟失細節(jié)和過分增強的缺點,,在增強圖像對比度的同時也增強了圖像的噪聲,給后續(xù)算法在運動矢量估計的精度上產(chǎn)生很大影響,。因此,,本文采用小波的方法,即圖像經(jīng)過小波變換分解為低頻部分和高頻部分,,然后單獨對高頻部分圖像的邊緣進行加強,。具體實現(xiàn)方法如下:

  (1)選擇Haar小波對圖像進行分解,得到圖像的低頻子圖和高頻子圖;

  (2)利用公式


(σ為噪聲標準方差,,N為信號的長度)確定閥值λ;

 

  (3)對高頻子圖按上述閥值進行邊沿檢測并標記;

  (4)對標記的邊緣進行加強,,對不是邊緣的置零。

  采用上述方法進行實驗,,結果如圖2所示:

  


 

  圖2 圖像增強效果對比

  通過以上結果可以看出,,直方圖均衡化在整體增強圖像的同時,也對圖像噪聲進行了增強,,圖像邊緣清晰度較差,,圖像偏暗;而采用小波邊緣增強法處理的圖像,沒有很明顯的噪聲影響,,同時圖像細節(jié)也很好地保留下來而且圖像對比度也得到了增強,。

  2 雨霧天氣下車載視頻穩(wěn)像的實驗

  2.1 實驗方法

  選取一段手動添加抖動的公路路段視頻進行試驗,以OpenCV結合VC++6.0作為軟件開發(fā)平臺編寫車載穩(wěn)像算法,,對視頻進行處理,,最后將視頻輸出到顯示器上顯示。

  2.2 運動矢量的估計

  選用經(jīng)過預處理后的相鄰兩幀圖像根據(jù)公式(1)(2)進行投影變換,,然后采用公式(3)計算兩幀圖像的行,、列相關曲線,。仿真結果如圖3所示:

  


 

  圖3 兩種情況下的運動矢量估計

  實驗中手動加入的水平和垂直方向的抖動量分別為-9和12;而實驗結果顯示,對未經(jīng)預處理的霧天圖像,,由于對比度很差,,采用灰度投影直接對其進行運動矢量檢測時,檢測到的水平和垂直方向的運動矢量分別為-3和5,,誤差較大;而圖3(b)是經(jīng)過均衡化處理后,,檢測到的水平和垂直方向運動矢量為-6和8,精度有所提高;最后圖3(c)是采用小波邊緣增強法對圖像進行對比度提高,,檢測的水平和垂直方向的運動偏移量分別為-7和10,,雖然還不能完全準確地檢測出實際偏移的運動矢量,但精度要高于直方圖均衡化處理后的檢測結果,。

關鍵字:視頻幀 PSNR值 圖像序列

 

2.3 運動補償

  本文采用兩兩相鄰幀進行運動矢量估計,,得到的是相對位移矢量,而每一幀的絕對運動參數(shù)是前N-1個相對位移矢量之和,。得到每一幀的絕對運動參數(shù)后,,在采用kal-man濾波器進行運動曲線平滑處理,將處理后的參數(shù)按相反方向?qū)Ξ斍皫M行平移,,即可得到穩(wěn)定后的圖像,。實驗結果如圖4所示:

  


 

  圖4 穩(wěn)定效果

  3 實驗結果分析

  算法在主頻Core(TM)2 Duo CPU 2.00GHz,內(nèi)存2.00GB的PC機上,,使用OpenCV結合VISUAL C++編程,。實驗結果顯示,在實時性方面,,穩(wěn)定320*240的圖像序列平均時間為0.02518s,,大于25幀/s的圖像實時性處理要求。穩(wěn)像精度上,,這里使用PSNR(Peak Signal To Noise Ratio)作為穩(wěn)像效果的一種評價標準,。其計算公式如下:

  


 

  其中均方誤差MSE表示兩幀圖像間每個像素的偏差值。當兩幅圖像內(nèi)容變化越小,,PSNR值就越大,,兩幅圖像完全一樣時,達到最大值,。其中相鄰5幀圖像穩(wěn)像前后PSNR值比較如下:

  


 

  由表1中數(shù)據(jù)可以看出,,經(jīng)過本系統(tǒng)處理后的視頻幀間重合度有了明顯地改善。

  通過對50幀視頻圖像序列進行的實驗表明,,經(jīng)過該方法處理后視頻的晃動幅度明顯得到了改善,,基本達到了穩(wěn)像的要求。

  4 結論

  由于惡劣天氣造成圖像對比度降低,,而直方圖均衡化處理效果不佳,,造成灰度投影在車載視頻穩(wěn)定中對運動矢量估計精度的降低甚至失效,。針對這一情況,本文采用小波邊緣增強的方法對圖像進行預處理,,實驗表明,,該方法有效提高了灰度投影算法的估計精度,并且算法也滿足實時性要求,。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載,。