《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 消除局域分解端部效應(yīng)的BP神經(jīng)網(wǎng)絡(luò)閉合方法
消除局域分解端部效應(yīng)的BP神經(jīng)網(wǎng)絡(luò)閉合方法
2017年電子技術(shù)應(yīng)用第5期
王莉娜1,楊 劍2,,孟慶強3
1.江蘇第二師范學院 數(shù)學與信息技術(shù)學院,,江蘇 南京210036; 2.江蘇第二師范學院 信息化建設(shè)與管理辦公室,,江蘇 南京210036,; 3.南京南瑞集團信息通信技術(shù)分公司,江蘇 南京210003
摘要: 詳細闡述了局部均值分解(LMD)信號處理方法,該方法非常適合處理非平穩(wěn)信號,,可其端部效應(yīng)嚴重制約了其進一步應(yīng)用推廣,。鏡像延拓是局域分解端部效應(yīng)處理的基本途徑,需要鏡像面放置在局部極值點處,,而實際信號有時難以滿足這個條件,,可能導致信號分解結(jié)果嚴重失真現(xiàn)象。為此,,提出了一種基于傳統(tǒng)鏡像延拓與BP神經(jīng)網(wǎng)絡(luò)相結(jié)合進行信號預測以改進LMD端部效應(yīng)消除效果的新方法。通過BP神經(jīng)網(wǎng)絡(luò)模型預測原始信號端點之外的數(shù)據(jù)點,,由此捕捉到端點之外的一個或者多個極值點,,再用鏡像技術(shù)形成閉合處理,從而抑制端部效應(yīng),。仿真信號的應(yīng)用實例表明,,所提方法可以有效抑制LMD端部效應(yīng)。
中圖分類號: TN911.7
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.2017.05.031
中文引用格式: 王莉娜,,楊劍,,孟慶強. 消除局域分解端部效應(yīng)的BP神經(jīng)網(wǎng)絡(luò)閉合方法[J].電子技術(shù)應(yīng)用,2017,,43(5):127-130,,133.
英文引用格式: Wang Lina,Yang Jian,,Meng Qingqiang. Local mean decomposition method to eliminate end effects of BP neural network method of closing the mirror[J].Application of Electronic Technique,,2017,,43(5):127-130,133.
Local mean decomposition method to eliminate end effects of BP neural network method of closing the mirror
Wang Lina1,,Yang Jian2,,Meng Qingqiang3
1.Mathematics and Information Technology,Jiangsu Second Normal University,,Nanjing 210036,,China; 2.Information Construction and Management Office,,Jiangsu Second Normal University,,Nanjing 210036,China,; 3.Nanjing NARI Group ICT Branch,,Nanjing 210003,China
Abstract: Local mean decomposition(LMD) signal processing method is elaborated and is very suitable for non-stationary signals, which can end effect severely restrict its further application. And promotion of local mirror extension is decomposed basic ways end effect processing,,which needs to be mirrored surface in local extreme point. Actual signal is sometimes difficult to satisfy this condition,,which may lead to serious distortion signal decomposition. To solve this problem, a conventional mirror extension and neural network is proposed to improve new LMD end effect eliminate the effect by a combination of data extrapolation method. The neural network model predictions fit the data points outside the end of original signal, thereby captures one or more endpoints than the extreme point. And then,mirroring technology forms a closed process, thereby inhibits the end effect. Simulation results show that the proposed method can effectively suppress LMD end effect.
Key words : LMD,;BP neural network,;simulation signal;end effect

0 引言

    傳統(tǒng)的時頻方法在處理非平穩(wěn)信號時無法得到信號蘊含的全部信息等問題,,使得相關(guān)學者致力于找到一種適合處理非平穩(wěn)信號的新的時頻分析技術(shù),。而2005年SMITH J S[1]提出局部均值分解(Local Mean Decomposition,LMD),,似乎為解決這一問題找到了一個良好途徑,。LMD分解信號后可以產(chǎn)生多個具有物理含義的生產(chǎn)函數(shù)(Production Function,PF)分量,,這些PF分量一般由包絡(luò)信號和純調(diào)頻信號構(gòu)成,,通過組合幅值和瞬時頻率就可以得到原信號的完整時頻圖[2-4]。LMD被提出以來,,相關(guān)學者發(fā)現(xiàn)LMD方法存在較為明顯的端部效應(yīng),。國內(nèi)外學者針對這一問題提出了諸多解決方法,如鏡像法,、神經(jīng)網(wǎng)絡(luò)法,、自回歸法以及波形匹配法等等[5-12]。其中鏡像拓展法效果稍占優(yōu)勢,,但鏡像拓展法需要將鏡面放置極值點處,,而BP神經(jīng)網(wǎng)絡(luò)具有良好泛化能力,極易找到信號端部的極值點[13-16]。鑒于此,,本文提出基于BP神經(jīng)網(wǎng)絡(luò)與鏡像技術(shù)相結(jié)合來處理LMD方法的端部效應(yīng)問題,。

1 LMD算法及端部效應(yīng)

    局域均值分解的基本流程如圖1所示,信號不斷篩選就可以得到原始信號的全部PF分量,。圖中,,x為原始信號,h,、u為變量,,ai為包絡(luò)函數(shù),PFi為生產(chǎn)函數(shù)分量,,si為純調(diào)頻函數(shù),,ni為局部極值點,mi為局部均值函數(shù)[1-3],。

jsj1-t1.gif

    對于待分解信號x(t),,其計算步驟如下[1-4]

    (1)首先提取帶分解信號的局部極值點,找到每個相鄰局部極值點的平均值:

jsj1-gs1-4.gif

    對s11(t)重復上述步驟,,便可獲得s11(t)的包絡(luò)估計函數(shù)a12(t),。若局部包絡(luò)函數(shù)a12(t)不等于2,則說明s11(t)不是純調(diào)頻信號,,重復上述步驟獲取的s1p(t)為純調(diào)頻信號,,于是:

jsj1-gs5-10.gif

2 基于鏡像延拓和BP神經(jīng)網(wǎng)絡(luò)的端部效應(yīng)處理方法

2.1 神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)序列預測模型

    BP神經(jīng)網(wǎng)絡(luò)算法就是利用BP算法來對神經(jīng)網(wǎng)絡(luò)進行訓練,神經(jīng)網(wǎng)絡(luò)具有三層,,分別為輸入,、輸出和中間層,經(jīng)驗表明,,中間層一般選取一個即可,,具體如圖2所示。

jsj1-t2.gif

    BP神經(jīng)網(wǎng)絡(luò)基本步驟如下:

jsj1-gs11-12.gif

jsj1-gs13-20.gif

    (9)隨機選取樣本提供給網(wǎng)絡(luò),,返回到步驟(3),,直到滿足要求?;舅悸啡鐖D3所示。

jsj1-t3.gif

2.2 鏡像延拓法

    為了更加顯著消除端部效應(yīng),,必須將鏡面放置在極值點處,,再根據(jù)信號特點決定放置鏡面的具體位置。最后兩端放置鏡面的原信號的像將和原信號構(gòu)成連續(xù)封閉的環(huán)狀,,如此原信號上下包絡(luò)線將完全通過內(nèi)部數(shù)據(jù)來得到,,可以避免端部效應(yīng)發(fā)生,故本文利用該方法來處理LMD的端部效應(yīng)[11-16]

2.3 基于BP神經(jīng)網(wǎng)絡(luò)和鏡像延拓閉合的端部效應(yīng)處理方法

    本文首先通過BP神經(jīng)網(wǎng)絡(luò)方法預測得到原始信號的兩端處的極值點,,再利用鏡像法對原信號形成閉環(huán),,最后將其運用到LMD分解過程中出現(xiàn)的端部效應(yīng)抑制中?;静襟E如下[10-14]

    (1)以原始信號數(shù)據(jù)作為樣本,,訓練得到BP神經(jīng)網(wǎng)絡(luò)預測模型。

    (2)以信號左端預測為例,,通過步驟(1)得到的預測模型對原始信號進行預測,,也就是通過xq-n+1,…,,xq預測xq+1,,再將xq+1代入到BP神經(jīng)網(wǎng)絡(luò)模型中,以xq-n+2,,…,,xq+1預測xq+2,如此反復,。右端預測同理,。

    (3)判斷步驟(2)得到的預測點是否為極值點。若為極值點,,停止預測,,否則繼續(xù)預測,從而得到全部預測序列xq,,…,,xq+p

    (4)將“鏡面”放置步驟(3)得到的極值點處,,使得原始信號形成閉環(huán)數(shù)據(jù),,再利用LMD對此信號進行分解。

3 仿真信號實驗及結(jié)果分析

    構(gòu)造仿真信號為:s(t)=0.5cos(0.4π·t)+cos(0.2π·t)+0.3sin(0.025π·t),,t∈[-57,,52],其信號如圖4所示,。這里,,僅用鏡像延拓進行端部效應(yīng)處理,LMD分解得到PF分量及其誤差分別如圖5和圖6所示,。從圖5和圖6可以看出,,LMD分解得到的各個PF分量與原信號之間誤差不是很大,但是端部效應(yīng)仍然比較明顯,。

jsj1-t4.gif

jsj1-t5.gif

jsj1-t6.gif

    采用本文提出的BP神經(jīng)網(wǎng)絡(luò)—鏡像延拓法對圖1所示信號進行LMD分解,,各PF分量與其真實構(gòu)成的對比結(jié)果如圖7所示,,它們與原始信號之間的誤差如圖8所示。利用BP神經(jīng)網(wǎng)絡(luò)方法對左右端點進行延拓獲取極大值點和極小值點時,,所獲得的效果較好,。將圖5和圖6的結(jié)果進行對比,可以看出,,利用BP神經(jīng)網(wǎng)絡(luò)函數(shù)擬合預測方法獲取一個或者幾個極大值點和極小值點后,,通過鏡像延拓法完全抑制了可能產(chǎn)生的端部效應(yīng),進而得到與原始構(gòu)成信號更為吻合的各個PF分量,。相對于圖6所示傳統(tǒng)鏡像延拓方法進行LMD分解各PF分量與原始構(gòu)成信號之間的誤差而言,,圖8所示BP神經(jīng)網(wǎng)絡(luò)—鏡像延拓方法LMD分解的誤差小得多。

jsj1-t7.gif

jsj1-t8.gif

4 結(jié)論

    本文提出了利用BP神經(jīng)網(wǎng)絡(luò)進行數(shù)據(jù)序列延拓來抑制端部效應(yīng)的一種新方法,,所提出理論方法的要點在于通過BP神經(jīng)網(wǎng)絡(luò)函數(shù)擬合外推預測方法分別正向和反向延拓一個或者多個極大值點和極小值點,,這樣就可以將鏡面放置在局部極值點上,然后再利用鏡像延拓法進行端部延拓處理,。它可以有效地抑制和消除LMD分解過程中可能出現(xiàn)的端部效應(yīng),,分解得到的PF也能更好地反映原信號的真實信息和特征。仿真實驗表明,,BP神經(jīng)網(wǎng)絡(luò)-鏡像延拓方法處理后進行LMD分解得到各個PF與原信號的構(gòu)成信號之間的誤差極小,。這種方法能夠適應(yīng)不同信號分析的需要,具有極高的適應(yīng)性和良好的推廣價值,。

參考文獻

[1] SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,,2005,2(5):444-450.

[2] HUANG N E,,SHEN Z,,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London,,Series A,,1998,454(1971):903-995.

[3] HUANG N E,,WU Z,,LONG S R,et al.On instantaneous frequency[J].Advances in adaptive Data Analysis,,2009,,1(2):177-229.

[4] 程軍圣,楊宇,,于德介.局部均值分解方法及其在齒輪故障診斷中的應(yīng)用[J].振動工程學報,,2009,22(1):76-84.

[5] WANG Y,,HE Z,,ZI Y. A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis[J].Journal of Vibration and Acoustics,2010,,132(2):010-021.

[6] WANG Y,,HE Z,ZI Y.A demodulation method based on improved local mean decomposition and its application in rub-impact fault diagnosis[J].Measurement Science and Technology,,2009,,20(2):25-32.

[7] CHENG J,YANG Y.A rotating machinery fault diagnosis method based on local mean decomposition [J].Digital Signal Processing,,2012,,22(2):356-366.

[8] WANG Y,HE Z,,XIANG J,,et al.Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox[J].Mechanism and Machine Theory,2012,,47(1):62-73.

[9] LIU H,,HAN M.A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings[J].Mechanism and Machine Theory,2014,,75(5):67-78.

[10] FENG Z,,ZUO M J,QU J,,et al.Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes[J].Mechanical Systems and Signal Processing,,2013,40(1):56-75.

[11] YANG Y,,CHENG J,,ZHANG K.An ensemble local means decomposition method and its application to local rubimpact fault diagnosis of the rotor systems[J].Measurement,2012,,45(3):561-570.

[12] YUAN B,,CHEN Z,XU S.Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J].Geoscience and Remote Sensing,,IEEE Transactions on,,2014,52(2):1285-1298.

[13] GUO Z,,WU J,,LU H,et al.A case study on a hybrid wind speed forecasting method using BP neural network[J].Knowledge-based systems,,2011,,24(7):1048-1056.

[14] DING S,SU C,,YU J.An optimizing BP neural network algorithm based on genetic algorithm[J].Artificial Intelligence Review,,2011,,36(2):153-162.

[15] WONG W E,QI Y.BP neural network-based effective fault localization[J].International Journal of Software Engineering and Knowledge Engineering,,2009,,19(4):573-597.

[16] REN C,AN N,,WANG J,,ET AL.Optimal parameters selection for BP neural network based on particle swarm optimization:A case study of wind speed forecasting[J].Knowledge-Based Systems,2014,,56(3):226-239.



作者信息:

王莉娜1,,楊  劍2,孟慶強3

(1.江蘇第二師范學院 數(shù)學與信息技術(shù)學院,,江蘇 南京210036,;

2.江蘇第二師范學院 信息化建設(shè)與管理辦公室,江蘇 南京210036,;

3.南京南瑞集團信息通信技術(shù)分公司,江蘇 南京210003)

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。