先進制程與先進封裝成為延續(xù)摩爾定律的關鍵技術,,2.5D,、3D 和Chiplets 等技術在近年來成為半導體產業(yè)的熱門議題。人工智能,、車聯(lián)網,、5G 等應用相繼興起,,且皆須使用到高速運算,、高速傳輸、低延遲,、低耗能的先進功能芯片;隨著運算需求呈倍數成長,,究竟要如何延續(xù)摩爾定律,成為半導體產業(yè)的一大挑戰(zhàn),。
先進封裝是如何在延續(xù)摩爾定律上扮演關鍵角色?而2.5D,、3D 和Chiplets 等封裝技術又有何特點?
一、芯片微縮愈加困難,,異構整合由此而生
換言之,,半導體先進制程紛紛邁入了7 納米、5 納米,,接著開始朝3 納米和2 納米邁進,電晶體大小也因此不斷接近原子的物理體積限制,,電子及物理的限制也讓先進制程的持續(xù)微縮與升級難度越來越高,。
也因此,半導體產業(yè)除了持續(xù)發(fā)展先進制程之外,,也「山不轉路轉」地開始找尋其他既能讓芯片維持小體積,,同時又保有高效能的方式;而芯片的布局設計,遂成為延續(xù)摩爾定律的新解方,,異構整合(Heterogeneous Integration Design Architecture System,,HIDAS)概念便應運而生,同時成為IC 芯片的創(chuàng)新動能,。
所謂的異構整合,,廣義而言,就是將兩種不同的芯片,,例如記憶體+邏輯芯片,、光電+電子元件等,透過封裝,、3D 堆疊等技術整合在一起,。換句話說,將兩種不同制程,、不同性質的芯片整合在一起,,都可稱為是異構整合。
因為應用市場更加的多元,,每項產品的成本,、性能和目標族群都不同,因此所需的異構整合技術也不盡相同,,市場分眾化趨勢逐漸浮現,。為此,,IC 代工、制造及半導體設備業(yè)者紛紛投入異構整合發(fā)展,,2.5D,、3D 封裝、Chiplets 等現今熱門的封裝技術,,便是基于異構整合的想法,,如雨后春筍般浮現。
二,、2.5D 封裝有效降低芯片生產成本
過往要將芯片整合在一起,,大多使用系統(tǒng)單封裝(System in a Package,SiP)技術,,像是PiP(Package in Package)封裝,、PoP(Package on Package)封裝等。然而,,隨著智能手機,、AIoT 等應用,不僅需要更高的性能,,還要保持小體積,、低功耗,在這樣的情況下,,必須想辦法將更多的芯片堆積起來使體積再縮小,,因此,目前封裝技術除了原有的SiP 之外,,也紛紛朝向立體封裝技術發(fā)展,。
立體封裝概略來說,意即直接使用硅晶圓制作的「硅中介板」(Silicon interposer),,而不使用以往塑膠制作的「導線載板」,,將數個功能不同的芯片,直接封裝成一個具更高效能的芯片,。換言之,,就是朝著芯片疊高的方式,在硅上面不斷疊加硅芯片,,改善制程成本及物理限制,,讓摩爾定律得以繼續(xù)實現。
而立體封裝較為人熟知的是2.5D 與3D 封裝,,這邊先從2.5D 封裝談起,。所謂的2.5D 封裝,主要的概念是將處理器、記憶體或是其他的芯片,,并列排在硅中介板(Silicon Interposer)上,,先經由微凸塊(Micro Bump)連結,讓硅中介板之內金屬線可連接不同芯片的電子訊號;接著再透過硅穿孔(TSV)來連結下方的金屬凸塊(Solder Bump),,再經由導線載板連結外部金屬球,,實現芯片、芯片與封裝基板之間更緊密的互連,。
2.5D和3D封裝是熱門的立體封裝技術,。(Source:ANSYS)
目前為人所熟知的2.5D 封裝技術,不外乎是臺積電的CoWoS,。CoWoS 技術概念,,簡單來說是先將半導體芯片(像是處理器、記憶體等),,一同放在硅中介層上,,再透過Chip on Wafer(CoW)的封裝制程連接至底層基板上。換言之,,也就是先將芯片通過Chip on Wafer(CoW)的封裝制程連接至硅晶圓,,再把CoW 芯片與基板連接,整合成CoWoS;利用這種封裝模式,,使得多顆芯片可以封裝到一起,透過Si Interposer 互聯(lián),,達到了封裝體積小,,功耗低,引腳少的效果,。
臺積電CoWos封裝技術概念,。(Source:臺積電)
除了CoWos 外,扇出型晶圓級封裝也可歸為2.5D 封裝的一種方式,。扇出型晶圓級封裝技術的原理,,是從半導體裸晶的端點上,拉出需要的電路至重分布層(Redistribution Layer),,進而形成封裝,。因此不需封裝載板,不用打線(Wire),、凸塊(Bump),,能夠降低30% 的生產成本,也讓芯片更薄,。同時也讓芯片面積減少許多,,也可取代成本較高的直通硅晶穿孔,達到透過封裝技術整合不同元件功能的目標。
當然,,立體封裝技術不只有2.5D,,還有3D 封裝。那么,,兩者之間的差別究竟為何,,而3D 封裝又有半導體業(yè)者正在采用?
相較于2.5D 封裝,3D 封裝的原理是在芯片制作電晶體(CMOS)結構,,并且直接使用硅穿孔來連結上下不同芯片的電子訊號,,以直接將記憶體或其他芯片垂直堆疊在上面。此項封裝最大的技術挑戰(zhàn)便是,,要在芯片內直接制作硅穿孔困難度極高,,不過,由于高效能運算,、人工智能等應用興起,,加上TSV 技術愈來愈成熟,可以看到越來越多的CPU,、GPU 和記憶體開始采用3D 封裝,。
3D封裝是直接將芯片堆疊起來。(Source:英特爾)
三,、臺積電,、英特爾積極發(fā)展3D 封裝技術
在3D 封裝上,英特爾(Intel)和臺積電都有各自的技術,。英特爾采用的是「Foveros」的3D 封裝技術,,使用異構堆疊邏輯處理運算,可以把各個邏輯芯片堆棧一起,。也就是說,,首度把芯片堆疊從傳統(tǒng)的被動硅中介層與堆疊記憶體,擴展到高效能邏輯產品,,如CPU,、繪圖與AI 處理器等。以往堆疊僅用于記憶體,,現在采用異構堆疊于堆疊以往僅用于記憶體,,現在采用異構堆疊,讓記憶體及運算芯片能以不同組合堆疊,。
另外,,英特爾還研發(fā)3 項全新技術,分別為Co-EMIB,、ODI 和MDIO,。Co-EMIB 能連接更高的運算性能和能力,,并能夠讓兩個或多個Foveros 元件互連,設計人員還能夠以非常高的頻寬和非常低的功耗連接模擬器,、記憶體和其他模組,。ODI 技術則為封裝中小芯片之間的全方位互連通訊提供了更大的靈活性。頂部芯片可以像EMIB 技術一樣與其他小芯片進行通訊,,同時還可以像Foveros 技術一樣,,通過硅通孔(TSV)與下面的底部裸片進行垂直通訊。
英特爾Foveros技術概念,。(Source:英特爾)
同時,,該技術還利用大的垂直通孔直接從封裝基板向頂部裸片供電,這種大通孔比傳統(tǒng)的硅通孔大得多,,其電阻更低,,因而可提供更穩(wěn)定的電力傳輸;并透過堆疊實現更高頻寬和更低延遲。此一方法減少基底芯片中所需的硅通孔數量,,為主動元件釋放了更多的面積,,優(yōu)化裸片尺寸。
而臺積電,,則是提出「3D 多芯片與系統(tǒng)整合芯片」(SoIC)的整合方案,。此項系統(tǒng)整合芯片解決方案將不同尺寸、制程技術,,以及材料的已知良好裸晶直接堆疊在一起,。
臺積電提到,相較于傳統(tǒng)使用微凸塊的3D 積體電路解決方案,,此一系統(tǒng)整合芯片的凸塊密度與速度高出數倍,,同時大幅減少功耗。此外,,系統(tǒng)整合芯片是前段制程整合解決方案,,在封裝之前連結兩個或更多的裸晶;因此,,系統(tǒng)整合芯片組能夠利用該公司的InFO 或CoWoS 的后端先進封裝技術來進一步整合其他芯片,,打造一個強大的「3D×3D」系統(tǒng)級解決方案。
此外,,臺積電亦推出3DFabric,,將快速成長的3DIC 系統(tǒng)整合解決方案統(tǒng)合起來,提供更好的靈活性,,透過穩(wěn)固的芯片互連打造出強大的系統(tǒng),。藉由不同的選項進行前段芯片堆疊與后段封裝,3DFabric 協(xié)助客戶將多個邏輯芯片連結在一起,,甚至串聯(lián)高頻寬記憶體(HBM)或異構小芯片,,例如類比、輸入/輸出,以及射頻模組,。3DFabric 能夠結合后段3D 與前段3D 技術的解決方案,,并能與電晶體微縮互補,持續(xù)提升系統(tǒng)效能與功能性,,縮小尺寸外觀,,并且加快產品上市時程。
在介紹完2.5D 和3D 之后,,近來還有Chiplets 也是半導體產業(yè)熱門的先進封裝技術之一;最后,,就來簡單說明Chiplets 的特性和優(yōu)勢。
除了2.5D 和3D 封裝之外,,Chiplets 也是備受關注的技術之一,。由于電子終端產品朝向高整合趨勢發(fā)展,對于高效能芯片需求持續(xù)增加,,但隨著摩爾定律逐漸趨緩,,在持續(xù)提升產品性能過程中,如果為了整合新功能芯片模組而增大芯片面積,,將會面臨成本提高和低良率問題,。因此,Chiplets 成為半導體產業(yè)因摩爾定律面臨瓶頸所衍生的技術替代方案,。
四,、Chiplets就像拼圖一樣,把小芯片組成大芯片
Chiplets 的概念最早源于1970 年代誕生的多芯片模組,,其原理大致而言,,即是由多個同質、異構等較小的芯片組成大芯片,,也就是從原來設計在同一個SoC 中的芯片,,被分拆成許多不同的小芯片分開制造再加以封裝或組裝,故稱此分拆之芯片為小芯片Chiplets,。
由于先進制程成本急速上升,,不同于SoC 設計方式,將大尺寸的多核心的設計,,分散到較小的小芯片,,更能滿足現今的高效能運算處理器需求;而彈性的設計方式不僅提升靈活性,也能有更好的良率及節(jié)省成本優(yōu)勢,,并減少芯片設計時程,,加速芯片Time to market 時間。
使用Chiplets 有三大好處,。因為先進制程成本非常高昂,,特別是模擬電路,、I/O 等愈來愈難以隨著制程技術縮小,而Chiplets 是將電路分割成獨立的小芯片,,并各自強化功能,、制程技術及尺寸,最后整合在一起,,以克服制程難以微縮的挑戰(zhàn),。此外,基于Chiplets 還可以使用現有的成熟芯片降低開發(fā)和驗證成本,。
目前已有許多半導體業(yè)者采用Chiplets 方式推出高效能產品,。像是英特爾的Intel Stratix 10 GX 10M FPGA 便是采用Chiplets 設計,以達到更高的元件密度和容量,。該產品是以現有的Intel Stratix 10 FPGA 架構及英特爾先進的嵌入式多芯片互連橋接(EMIB)技術為基礎,,運用了EMIB 技術融合兩個高密度Intel Stratix 10 GX FPGA 核心邏輯芯片以及相應的I /O 單元。至于AMD 第二代EPYC 系列處理器也是如此,。有別于第一代將Memory 與I/O 結合成14 納米CPU 的Chiplet 方式,,第二代是把I/O 與Memory 獨立成一個芯片,并將7 納米CPU 切成8 個Chiplets 進行組合,。
過去的芯片效能都仰賴半導體制程的改進而提升,,但隨著元件尺寸越來越接近物理極限,芯片微縮難度越來越高,,要保持小體積,、高效能的芯片設計,半導體產業(yè)不僅持續(xù)發(fā)展先進制程,,同時也朝芯片架構著手改進,,讓芯片從原先的單層,轉向多層堆疊,。