基于改進(jìn)蟻群算法的云計算資源分配策略研究
2022年電子技術(shù)應(yīng)用第5期
劉燈明,,荊俊峰,,劉 凱,,房志奇
華北計算機系統(tǒng)工程研究所,,北京100083
摘要: 在實際的項目中會發(fā)現(xiàn)蟻群算法直接應(yīng)用于云計算資源分配時經(jīng)常會出現(xiàn)負(fù)載失衡的情況,,導(dǎo)致資源利用率不高,,同時導(dǎo)致任務(wù)完成時間太長,,算法迭代次數(shù)過大,。這種情況不僅會大大地降低云計算系統(tǒng)的效率,,還會造成系統(tǒng)不穩(wěn)定。因此針對蟻群算法進(jìn)行了一系列改進(jìn),,具體包括:引入偽隨機比例規(guī)則,,進(jìn)行全局信息素強化,引入了交叉變異操作,,將蟻群算法與遺傳算法相融合,。然后進(jìn)行了MATLAB仿真實驗,,實驗結(jié)果表明:改進(jìn)算法的任務(wù)完成時間更短,算法迭代次數(shù)更少,,負(fù)載均衡效果更好,。由此可以得出結(jié)論:對蟻群算法的改進(jìn)是有效的。
中圖分類號: TP39
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.211725
中文引用格式: 劉燈明,,荊俊峰,,劉凱,等. 基于改進(jìn)蟻群算法的云計算資源分配策略研究[J].電子技術(shù)應(yīng)用,,2022,,48(5):104-109.
英文引用格式: Liu Dengming,Jing Junfeng,,Liu Kai,,et al. Research on cloud computing resource allocation strategy based on improved ant colony algorithm[J]. Application of Electronic Technique,2022,,48(5):104-109.
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.211725
中文引用格式: 劉燈明,,荊俊峰,,劉凱,等. 基于改進(jìn)蟻群算法的云計算資源分配策略研究[J].電子技術(shù)應(yīng)用,,2022,,48(5):104-109.
英文引用格式: Liu Dengming,Jing Junfeng,,Liu Kai,,et al. Research on cloud computing resource allocation strategy based on improved ant colony algorithm[J]. Application of Electronic Technique,2022,,48(5):104-109.
Research on cloud computing resource allocation strategy based on improved ant colony algorithm
Liu Dengming,,Jing Junfeng,Liu Kai,,F(xiàn)ang Zhiqi
North China Institute of Computer Systems Engineering,,Beijing 100083,China
Abstract: In actual projects, it is found that if the ant colony algorithm is directly applied to cloud computing resource allocation, there will often be load imbalances, resulting in low resource utilization. And at the same time, the task completion time is too long, and the number of algorithm iterations is too large. This situation will not only greatly reduce the efficiency of the cloud computing system, but also cause system instability. Therefore, this article has made a series of improvements to the ant colony algorithm,including: the introduction of pseudo-random proportional rules, global pheromone enhancement, the introduction of cross mutation operations,and integration of ant colony algorithm and genetic algorithm. And then MATLAB simulation experiments are carried out.The experimental results show that the task completion time of the improved algorithm is shorter, the number of algorithm iterations is less, and the load balancing effect is better. From this, it can be concluded that the ant colony algorithm is better. The improvement is effective.
Key words : ant colony algorithm,;improvement,;cloud computing,;load balancing
0 引言
現(xiàn)代社會進(jìn)入了大數(shù)據(jù)時代,,傳統(tǒng)的計算模式存在很多局限性,不能夠滿足這種大數(shù)據(jù)的處理需求,,因此“云計算”應(yīng)運而生[1],。云計算中一個十分關(guān)鍵的問題就是負(fù)載均衡,負(fù)載均衡的含義是把任務(wù)平均地分配到云計算系統(tǒng)中的各個資源點上,,所以設(shè)計出高效合理的資源分配策略非常重要[2],。目前資源分配策略的相關(guān)研究已經(jīng)取得了不錯的研究成果,例如:譚一鳴等人提出了一種能夠降低系統(tǒng)能耗的資源分配策略,,李安南創(chuàng)新性地提出了一種QoS約束簡化的資源分配策略[3],。在云計算資源分配策略中采用了各種算法,例如:蟻群算法,。蟻群算法有很多優(yōu)點,,因此經(jīng)常被應(yīng)用到云計算資源分配問題上[4]。然而在實際的項目中會發(fā)現(xiàn)蟻群算法直接應(yīng)用于云計算資源分配問題時效果不好,,常常會出現(xiàn)負(fù)載失衡,,所以本文針對蟻群算法進(jìn)行了一系列改進(jìn),,對蟻群算法進(jìn)行改進(jìn)方面的研究是本文的研究重點,改進(jìn)后進(jìn)行了實驗,,實驗結(jié)果表明:對蟻群算法的改進(jìn)是有效的,。
本文詳細(xì)內(nèi)容請下載:http://forexkbc.com/resource/share/2000004287。
作者信息:
劉燈明,,荊俊峰,,劉 凱,房志奇
(華北計算機系統(tǒng)工程研究所,,北京100083)
此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。