《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 業(yè)界動(dòng)態(tài) > 一種基于四階累積量的自適應(yīng)均值濾波算法

一種基于四階累積量的自適應(yīng)均值濾波算法

2008-04-25
作者:潘梅森,,肖政宏

  摘 要: 提出了一種基于四階累積量" title="累積量">累積量的自適應(yīng)均值濾波算法" title="均值濾波算法">均值濾波算法;詳細(xì)介紹了根據(jù)窗口的四階累積量自適應(yīng)計(jì)算并確定噪聲點(diǎn)的閾值,;濾波窗口自適應(yīng)調(diào)整大小和權(quán)值" title="權(quán)值">權(quán)值自適應(yīng)計(jì)算的加權(quán)均值濾波,;對(duì)噪聲點(diǎn)進(jìn)行逐點(diǎn)濾波,。比較和分析了實(shí)驗(yàn)結(jié)果。
  關(guān)鍵詞: 四階累積量 椒鹽噪聲 均值濾波 峰值信噪比


  圖像在景物成像、空間采樣和量化等過(guò)程中經(jīng)常被外界各種噪聲干擾,,使圖像質(zhì)量下降,。為盡可能減小噪聲影響,對(duì)降質(zhì)圖像必須進(jìn)行去噪" title="去噪">去噪處理,。比較成熟的去噪處理方法有多種,,均值濾波是其中非常有效的方法之一。標(biāo)準(zhǔn)均值濾波算法是對(duì)圖像濾波窗口取平均值代替窗口中心像素點(diǎn),,這樣可以在一定程度上抑制噪聲,。但是這種方法本身存在著以下缺陷:圖像細(xì)節(jié)得不到很好的保護(hù),在去噪的同時(shí)也破壞了圖像的部分細(xì)節(jié),,從而使圖像變得模糊,;對(duì)脈沖噪聲的消除效果不理想。
1 算法思想
  本文提出了一種基于四階累積量的自適應(yīng)均值濾波算法,,其基本思想是:首先用一個(gè)3×3窗口在圖像上滑動(dòng),,計(jì)算該窗口內(nèi)所有像素的四階累積量,并計(jì)算出該窗口中心像素的噪聲敏感度系數(shù),,根據(jù)噪聲敏感度系數(shù)判斷該中心像素是否為噪聲點(diǎn),;然后根據(jù)3×3窗口中噪聲點(diǎn)的個(gè)數(shù)自適應(yīng)調(diào)整濾波窗口大小,;最后采用改進(jìn)的均值濾波方法對(duì)標(biāo)記為噪聲點(diǎn)的像素進(jìn)行濾波?;谒碾A累積量的自適應(yīng)均值濾波算法在很大程度上保護(hù)了圖像的細(xì)節(jié),,同時(shí)也抑制了噪聲,比標(biāo)準(zhǔn)均值濾波算法具有更好的濾波性能,,為消除圖像中的噪聲提供了一種新的途徑,。
2 基于四階累積量的自適應(yīng)均值濾波算法
  基于四階累積量的自適應(yīng)均值濾波包括三個(gè)過(guò)程:根據(jù)窗口的四階累積量計(jì)算噪聲敏感度系數(shù),并確定圖像中噪聲點(diǎn),;確定濾波窗口大?。粚?duì)噪聲點(diǎn)進(jìn)行濾波,。
2.1 根據(jù)窗口的四階累積量自適應(yīng)確定噪聲點(diǎn)
  確定噪聲點(diǎn)是整個(gè)濾波算法中最重要的一步,,它關(guān)系到圖像中像素點(diǎn)的正確分類。確定噪聲點(diǎn)的方法很多,,文獻(xiàn)[1]采用3×3窗口確定噪聲點(diǎn),,通過(guò)計(jì)算窗口內(nèi)所有像素點(diǎn)灰度值的平均值與中心像素點(diǎn)的差值,將該差值與給定的閾值進(jìn)行比較,,差值大于閾值的像素點(diǎn)視為噪聲點(diǎn),,否則視為非噪聲點(diǎn)。該方法存在以下兩個(gè)問題:(1)閾值的選擇具有很大的隨機(jī)性,,選擇太大,,噪聲消除不干凈,;選擇太小,破壞圖像的細(xì)節(jié),,易使圖像模糊,。(2)閾值是事先給定的一個(gè)固定值,在整個(gè)濾波過(guò)程中不再變化,,該固定的閾值不能真實(shí)地反映每個(gè)像素點(diǎn)對(duì)噪聲的敏感程度,。文獻(xiàn)[2]使用一個(gè)K×K的窗口在圖像上滑動(dòng),找出該窗口中灰度的最大值和最小值,,如果窗口中心像素灰度值等于最大值或最小值,,則確定該像素為噪聲點(diǎn),否則視為非噪聲點(diǎn),。該方法的缺點(diǎn)在于:把局部窗口的最大值和最小值作為噪聲的判斷標(biāo)準(zhǔn),,雖然具有一定的自適應(yīng)性,但如果該最大值和最小值本身不是噪聲點(diǎn),,而以它們?yōu)榕袛嘣肼暤臉?biāo)準(zhǔn),,就會(huì)把非噪聲點(diǎn)誤判為噪聲點(diǎn)。本文把以上兩種方法有機(jī)結(jié)合起來(lái),,采用一種新的方法確定噪聲點(diǎn),。
  假設(shè)圖像P大小為M×N,左上角像素點(diǎn)位置為(1,,1),。首先找出整幅圖像灰度值的最大值和最小值,分別記為Max(PM×N)和Min(PM×N),。在確定噪聲點(diǎn)時(shí)仍采用3×3窗口在圖像上滑動(dòng),,該窗口中心像素點(diǎn)灰度值為g(i,j),,則該窗口內(nèi)所有像素值構(gòu)成如下集合:
  Si,,j={g(i+k,j+r)|k,,r=-1,,0,1}
  求出該窗口中所有像素的平均值A(chǔ)verage(Si,,j),,計(jì)算公式如下:
  
  如果中心像素點(diǎn)的閾值用Ti,j表示,,確定噪聲點(diǎn)的方法為:當(dāng)中心像素的灰度值g(i,,j)=Max(PM×N)、g(i,j)=Min(PM×N)或g(i,,j)-Average(Si,,j)>Ti,j,,則該像素視為噪聲點(diǎn),。
  噪聲點(diǎn)標(biāo)記為F(i,j)=1,,非噪聲點(diǎn)標(biāo)記為F(i,,j)=0。對(duì)于上述方法,,方法(1)和(2)很容易實(shí)現(xiàn),,方法(3)實(shí)現(xiàn)的難點(diǎn)在于如何確定閾值Ti,j,,因?yàn)門i,,j對(duì)于圖像濾波質(zhì)量有非常重要影響。本文提出基于四階累積量的噪聲敏感度系數(shù)來(lái)確定閾值Ti,,j,。
  在本文中定義的噪聲敏感度系數(shù)是人類視覺系統(tǒng)剛好能夠感受到的圖像噪聲的臨界值,用β表示,。在文獻(xiàn)[3]中選用了標(biāo)準(zhǔn)差來(lái)定義β,;在文獻(xiàn)[4]中通過(guò)計(jì)算像素點(diǎn)r階中心矩來(lái)定義β。本文中,,通過(guò)計(jì)算四階累積量對(duì)β進(jìn)行定義,,這是因?yàn)槲墨I(xiàn)[3]和文獻(xiàn)[4]所定義的β比較粗糙,而四階累積量可以得到比標(biāo)準(zhǔn)差更多的信息,。βi,j是β矩陣的(i,,j)元素值,,表示窗口Si,j中心像素點(diǎn)(i,,j)的噪聲敏感度系數(shù),。
  假設(shè)一個(gè)均值為零的實(shí)值信號(hào)s(t),它的概率密度函數(shù)為p(s),,K[p(s)]是信號(hào)規(guī)范的四階累積量[5],,其定義式如下:
  
  其中n2表示窗口的大小,本文中n2=9,;C4[g(i+k,,j+r)-Average(Si,j)]表示窗口像素對(duì)于該窗口均值差值的四階累積量,這是為了使窗口子圖像變?yōu)榫禐榱愕男盘?hào),。把噪聲敏感度系數(shù)做為判斷噪聲點(diǎn)的閾值,,即Ti,ji,,j,。每個(gè)像素是否為噪聲點(diǎn),只要計(jì)算中心像素的噪聲敏感度系數(shù),,然后判斷是否g(i,,j)-Average(Si,j)>βi,,j即可,。
2.2 自適應(yīng)確定濾波窗口大小
  標(biāo)準(zhǔn)均值濾波算法的平均效果會(huì)引起圖像模糊。模糊程度和濾波窗口大小成正比,,選擇較小的濾波窗口能保護(hù)圖像細(xì)節(jié)部分,,但是去噪能力較弱;選擇較大的濾波窗口雖然能得到較強(qiáng)的去噪能力,,但是圖像會(huì)變得模糊,。根據(jù)這些特點(diǎn),本文結(jié)合小窗口濾波和大窗口濾波兩方面的優(yōu)勢(shì),,根據(jù)窗口內(nèi)噪聲點(diǎn)的個(gè)數(shù),,自適應(yīng)確定濾波窗口大小。
  在統(tǒng)計(jì)噪聲點(diǎn)個(gè)數(shù)時(shí),,仍然采用3×3窗口,。在確定窗口中心像素為噪聲點(diǎn)的情況下,統(tǒng)計(jì)公式如下:
  3×3窗口內(nèi)噪聲點(diǎn)個(gè)數(shù)有關(guān),。
2.3 對(duì)噪聲點(diǎn)進(jìn)行濾波
  在確定噪聲點(diǎn)和濾波窗口大小之后,,接著進(jìn)行濾波處理。整個(gè)圖像像素已劃分為噪聲點(diǎn)和非噪聲點(diǎn)兩大類,。對(duì)非噪聲點(diǎn)本身不需要濾波,,但可能會(huì)參與其鄰域像素的濾波,而噪聲點(diǎn)則采用改進(jìn)的均值濾波進(jìn)行去噪處理,。標(biāo)準(zhǔn)均值濾波是用窗口內(nèi)像素灰度值的平均值代替窗口中心像素點(diǎn)灰度值,,或者用窗口內(nèi)像素灰度值各自乘以一個(gè)權(quán)值后由加權(quán)平均值代替中心像素灰度值。改進(jìn)的均值濾波與標(biāo)準(zhǔn)均值濾波有些不同,。主要區(qū)別在于權(quán)值的自適應(yīng)選擇,。權(quán)值的選擇應(yīng)滿足:如果濾波窗口內(nèi)某像素點(diǎn)的灰度值越接近中心像素點(diǎn)灰度值,則其權(quán)值也相應(yīng)越大,;反之,,如果其灰度值與中心像素點(diǎn)灰度值相差較大,,則其權(quán)值也相應(yīng)越小。在計(jì)算權(quán)值時(shí),,本文采用了以下的權(quán)值函數(shù):
  
  其中x表示濾波窗口灰度值的平均值與中心像素點(diǎn)的差值,,很顯然,該函數(shù)滿足上述權(quán)值選擇要求,。若像素g(i,,j)是噪聲點(diǎn),其濾波窗口大小FWi,,j為(2n+1)×(2n+1),,n∈{1,2,,3},,則權(quán)值計(jì)算過(guò)程如下:
  
3 模擬實(shí)驗(yàn)和結(jié)果分析
  在實(shí)驗(yàn)圖像中,使用大小為256×256像素,、灰度為256級(jí)的Lena圖像,,實(shí)驗(yàn)圖像如圖1所示。
  實(shí)驗(yàn)環(huán)境為MatLab 6.5軟件,。在不同程度噪聲干擾下,,比較本文提出的基于四階累積量的自適應(yīng)均值濾波、標(biāo)準(zhǔn)均值濾波和標(biāo)準(zhǔn)中值濾波" title="中值濾波">中值濾波在去噪,、保護(hù)細(xì)節(jié)等方面的性能,。選擇PSNR和ISNR作為客觀評(píng)價(jià)的標(biāo)準(zhǔn),PSNR和ISNR的定義分別為:
  
  其中,,L是圖像中灰度值的最大值,,對(duì)于256級(jí)灰度圖像,L=255,,M=N=256,;h(x,y)為實(shí)驗(yàn)圖像的灰度值,;g(x,,y)是加噪后需要濾波的噪聲圖像的灰度值;f(x,,y)是濾波后的圖像的灰度值,;MSE是圖像的均方誤差,;PSNR是峰值信噪比,;ISNR是改善信噪比。
  在圖1(a)中分別加入5%,、10%,、20%,、30%、40%和45%的椒鹽噪聲,,采用基于HVS的自適應(yīng)均值濾波,、標(biāo)準(zhǔn)均值濾波和標(biāo)準(zhǔn)中值濾波對(duì)圖像進(jìn)行去噪處理,相應(yīng)計(jì)算PSNR和ISNR值,,得到性能指標(biāo)比較如表1所示,。

?


  由表1和圖1可以得到:
  (1)基于四階累積量的自適應(yīng)均值濾波PSNR與ISNR值比3×3和5×5均值濾波對(duì)應(yīng)的值大得多。這表明基于四階累積量的自適應(yīng)均值濾波在去噪及保護(hù)細(xì)節(jié)兩方面的能力比均值濾波強(qiáng),。隨著椒鹽噪聲加大,,其PSNR與均值濾波的PSNR的差值仍非常明顯,有增大的趨勢(shì),。圖1(b)是噪聲達(dá)到45%時(shí)的圖像,,圖1(d)、圖1(e)分別是3×3和5×5均值濾波后的結(jié)果,,圖像細(xì)節(jié)部分基本上沒有得到保護(hù),,圖像變得模糊不清。
  (2)基于四階累積量的自適應(yīng)均值濾波的PSNR與ISNR值比3×3中值濾波對(duì)應(yīng)的值也要大,,并且隨著椒鹽噪聲加大,,差值增加非常明顯。圖1(f)是當(dāng)噪聲加大到45%時(shí)濾波的結(jié)果,,圖中顯示3×3中值濾波對(duì)細(xì)節(jié)保護(hù)較好,,但存在較多的噪聲,圖像有些模糊,。
  (3)基于四階累積量的自適應(yīng)均值濾波的PSNR與ISNR值比5×5中值濾波差值也很明顯,,但是差值基本上維持在5.4~6.5。圖1(g)顯示了當(dāng)噪聲加大到45%時(shí)濾波的結(jié)果,,圖中顯示5×5中值濾波去噪能力有所增強(qiáng),,但圖像模糊程度增大,部分細(xì)節(jié)沒有得到很好保護(hù),,出現(xiàn)比較明顯的變質(zhì),。
  (4)基于四階累積量的自適應(yīng)均值濾波基本上去除了噪聲,細(xì)節(jié)也得到了較好的保護(hù),,圖像清晰度較高,。在以上幾種濾波方法中,無(wú)論是表1數(shù)據(jù)還是圖1都顯示了該方法的優(yōu)異濾波性能,。但從圖1(c)中也看到,,圖像中人物的左眼模糊,這也說(shuō)明該方法在保護(hù)細(xì)節(jié)方面還存在不足,。
  基于四階累積量的自適應(yīng)均值濾波之所以有更好的濾波性能,,原因在于:
  (1)在確定噪聲點(diǎn)時(shí),,由于使用了噪聲敏感度系數(shù)作為閾值,使得每個(gè)像素點(diǎn)都有一個(gè)客觀閾值標(biāo)準(zhǔn)來(lái)自適應(yīng)地進(jìn)行噪聲判斷,,而不像標(biāo)準(zhǔn)均值濾波那樣,,隨機(jī)地給定一個(gè)閾值,并且在整個(gè)濾波過(guò)程中不再變化,,顯然這個(gè)閾值不能真實(shí)地反映每個(gè)像素點(diǎn)的噪聲狀況,。
  (2)在濾波時(shí),小窗口能夠較好保護(hù)細(xì)節(jié),,但去噪能力相對(duì)較弱,;大窗口雖有較好的去噪能力,但是細(xì)節(jié)保護(hù)能力較弱,。而基于四階累積量的自適應(yīng)均值濾波能根據(jù)窗口內(nèi)噪聲點(diǎn)個(gè)數(shù)自適應(yīng)地選擇合適的濾波窗口,,這樣,既能較好地保護(hù)細(xì)節(jié)部分,,也有較好的去噪聲能力,。而標(biāo)準(zhǔn)均值濾波和標(biāo)準(zhǔn)中值濾波都不具有自適應(yīng)性。
  (3)由于事先確定了噪聲點(diǎn),,所以在濾波時(shí)只對(duì)噪聲點(diǎn)進(jìn)行濾波,,非噪聲點(diǎn)參與濾波,這樣非噪聲點(diǎn)的灰度值就不會(huì)遭到破壞,。而標(biāo)準(zhǔn)均值濾波和標(biāo)準(zhǔn)中值濾波對(duì)所有的像素點(diǎn)都進(jìn)行濾波,,細(xì)節(jié)得不到真正的保護(hù)。
  (4)在濾波時(shí),,也考慮到權(quán)值的自適應(yīng)性,。權(quán)值的自適應(yīng)性表現(xiàn)在:如果濾波窗口內(nèi)某像素點(diǎn)的灰度值越接近中心像素點(diǎn)灰度值,則其權(quán)值相應(yīng)地也越大,;反之,,則其權(quán)值相應(yīng)地也越小。本文中所采用的計(jì)算權(quán)值的函數(shù)滿足了權(quán)值的自適應(yīng)性,。
  基于四階累積量的自適應(yīng)均值濾波采用了噪聲敏感度系數(shù)作為確定噪聲點(diǎn)的依據(jù),,根據(jù)窗口內(nèi)噪聲點(diǎn)的個(gè)數(shù),自適應(yīng)地選擇合適的濾波窗口,,并在濾波時(shí)采用了改進(jìn)的加權(quán)平均來(lái)計(jì)算均值,。這種方法在保護(hù)細(xì)節(jié)與去噪能力之間做了較好的折衷,比標(biāo)準(zhǔn)均值濾波和標(biāo)準(zhǔn)中值濾波具有更好的濾波能力,。
參考文獻(xiàn)
1 Liu J P,,Yu Y L.A flexible method for image noise removal[J].Joural of South China University Technology,2000,;28(2):60~63
2 祝宇鴻.一種改進(jìn)的數(shù)字圖像中值濾波算法[J].長(zhǎng)春郵電學(xué)院學(xué)報(bào),,2001;19(2):23~27
3 Piva A,,Barni M,,Bartolini F et al.DCT-based watermark recovering without resorting to the uncorrupted original image.In:Proceedings of 4th IEEE international conference on image processing ICIP′97.Santa Barbara,CA,,USAL:ICIP,,1997
4 Zhong W.Image watermarking using legendre array[J].Journal of China Institute of Communications,2001,;22(1):1~6
5 張 嚴(yán).基于高階累積量的諧波信號(hào)參考估計(jì)問題研究.吉林工業(yè)大學(xué)碩士學(xué)位論文,,1998

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,,并不代表本網(wǎng)站贊同其觀點(diǎn),。轉(zhuǎn)載的所有的文章、圖片,、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有,。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容,、版權(quán)和其它問題,,請(qǐng)及時(shí)通過(guò)電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,,避免給雙方造成不必要的經(jīng)濟(jì)損失,。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com,。