基于特征選擇的IPSO-GRU脫硫系統(tǒng)出口SO2濃度預(yù)測模型
所屬分類:技術(shù)論文
上傳者:zhoubin333
文檔大小:512 K
標(biāo)簽: 預(yù)測模型 mRMR 改進(jìn)粒子群
所需積分:0分積分不夠怎么辦,?
文檔介紹: 針對燃煤電廠在吹掃等過程中脫硫系統(tǒng)出口 SO2濃度的不能及時檢測的問題,,提出了一種基于特征選擇的改進(jìn)粒子群優(yōu)化算法優(yōu)化門控循環(huán)單元神經(jīng)網(wǎng)絡(luò)(IPSO-GRU)的脫硫系統(tǒng)出口 SO2濃度預(yù)測模型,。通過最大相關(guān)最小冗余(minimum Redundancy and Maximum Relevance,,mRMR)算法對采集的目標(biāo)數(shù)據(jù)進(jìn)行預(yù)處理,,挑選出合適的變量,,隨后將選定的變量作為 IPSO-GRU預(yù)測模型的輸入,。針對門控循環(huán)單元(Gated Recurrent Unit,,GRU)模型關(guān)鍵超參數(shù)難以確定的問題,,使用改進(jìn)粒子群(Improved Particle Swarm Optimization,,IPSO)算法對模型參數(shù)進(jìn)行訓(xùn)練,以降低 GRU的訓(xùn)練成本,。最終實現(xiàn)對脫硫系統(tǒng)出口二氧化硫濃度的預(yù)測,。實驗結(jié)果表明,所提模型與傳統(tǒng)循環(huán)神經(jīng)網(wǎng)絡(luò)相比預(yù)測精度更高,,在工程實際中更具應(yīng)用價值,。
現(xiàn)在下載
VIP會員,AET專家下載不扣分,;重復(fù)下載不扣分,,本人上傳資源不扣分。