摘 要: 提出了一個基于CODIC的計算Bernstein多項式的移位-加算法,。該算法可以在存在于許多領(lǐng)域的基本計算系統(tǒng)中實現(xiàn)。證明了算法的收斂性,,給出了誤差分析,,做了數(shù)值實驗,驗證了算法的有效性和效率,。
關(guān)鍵詞: Bernstein多項式,;CORDIC;移位-加算法,;基本計算系統(tǒng)
在高級計算系統(tǒng)中,,可以很容易地找到Bernstein多項式的算法[3]。例如,,在Mathematica中,,可以用BernsteinBasis[n,i,,t]計算,。用高級語言編程計算Bernstein多項式也非常容易。本文討論如何在基本計算系統(tǒng)(僅具備移位,、加和邏輯運算功能的計算系統(tǒng))中計算Bernstein多項式,。基本計算系統(tǒng)存在于許多系統(tǒng)中,,例如工業(yè)控制系統(tǒng),、軍事應用系統(tǒng)、醫(yī)療應用系統(tǒng)等,。典型的有單片機系統(tǒng)和FPGA(Field Programmable Gate Arrays)等,。
CORDIC算法是可計算多種基本初等函數(shù)的移位-加算法[4-6],。參考文獻[7-8]擴展了CORDIC算法,其收斂性和誤差估計在參考文獻[7]中做了分析,。隨著硬件技術(shù)的發(fā)展,,這些快速統(tǒng)一移位-加算法可以用硬件實現(xiàn),而且不需使用乘法器[9],,成本較低,,也可以用匯編語言編程實現(xiàn)。本文提出一個基于CORDIC算法的Bernstein多項式移位-加算法,。
參考文獻
[1] NATARAJ P S V,, AROUNASSALAME M. A new subdivision algorithm for the bernstein polynomial approach to global optimization[J]. International Journal of Automation and Computing, 2007,,4(4):342-352.
[2] FARIN G. Curves and surfaces for computer-aided geometric design: a practical guide,, 4th Ed. Academic Press, San Diego,, 1997.
[3] FENG Jieqing,, PENG Qunsheng. Fast algorithm for composition of the bernstein polynomials[J]. Journal of Computer-Aided Design & Computer Graophics, 2001,,13(2).
[4] VOLDER J E. The CORDIC computing technique[J]. IRE Transactions on Electronic Computers,, 1959,8(9):330-334.
[5] MULLER J M. Elementary functions,, algorithms and implementation. Birkhauser Boston,, 1st edition,1997. 2nd edition,, 2006:133-156.
[6] EKLUND N. CORDIC: elementary function computation using recursive sequences[C]. International Conference on Technology,, 1998.
[7] GU Feng. Convergence and error estimation of coordinate rotating algorithm and its expansion[J]. Chinese Journal of Numerical Mathematics and Applications, 2006,,28(2):1-9.
[8] HU Xiaobo,, HARBER R, BASS S. Expanding the range of convergence of the CORDIC algorithm[J]. IEEE Transactions on Computers,, 1991,,40(1):13-21.
[9] ANDRAKA R. A survey of CORDIC algorithms for FPGA based computers[C]. In Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays(FPGA) 1998:191-200.